Tunable strong photo-mixing in Weyl semimetals
نویسندگان
چکیده
منابع مشابه
Photocurrents in Weyl semimetals
Ching-Kit Chan,1 Netanel H. Lindner,2 Gil Refael,3 and Patrick A. Lee1 1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2Physics Department, Technion, 320003 Haifa, Israel 3Institute of Quantum Information and Matter and Department of Physics, California Institute of Technology, Pasadena, California 91125, USA (Received 13 August 2016; revised m...
متن کاملCharge transport in Weyl semimetals.
We study transport in Weyl semimetals with N isotropic Weyl nodes in the presence of Coulomb interactions or disorder at temperature T. In the interacting clean limit, we determine the conductivity σ(ω,T) by solving a quantum Boltzmann equation within a "leading log" approximation and find it to be proportional to T, up to logarithmic factors arising from the flow of couplings. In the nonintera...
متن کاملElectromagnetic response of Weyl semimetals.
It has been suggested recently, based on subtle field-theoretical considerations, that the electromagnetic response of Weyl semimetals and the closely related Weyl insulators can be characterized by an axion term θE·B with space and time dependent axion angle θ(r,t). Here we construct a minimal lattice model of the Weyl medium and study its electromagnetic response by a combination of analytica...
متن کاملCollective modes in multi-Weyl semimetals
We investigate collective modes in three dimensional (3D) gapless multi-Weyl semimetals with anisotropic energy band dispersions (i.e., with a positive integer J). For comparison, we also consider the gapless semimetals with the isotropic band dispersions (i.e. E ~ kJ). We calculate analytically long-wavelength plasma frequencies incorporating interband transitions and chiral properties of carr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2020
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.101.085307